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A PERTURBATION ANALYSIS OF ThE ATTENUATION AND
DI SPERSION OF SURFACE WAVES

H.F. Tiersten and B.K. Sirtha
Department of Mechanical Engineering,
Aeronautical Eng ineering & Mechanics

Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT

A perturbation formulation of the equations of linear piezoei~~~~rI&i~~’ is H
obtained using a Green ’s function approach . Although the resulting equation

for the first perturbation of the eigenvalue strictly holds for real perturba-~
tions of real eigenvalues only, it is formally extended to the case of purely

imaginary perturbations of real eigenvalues. The extended equation is applied

in the calculation of the attenuation of surface waves due to the finite elec-

trical conductivity of thin metal films plated on the surface and air loading.

The influence of the viscosity of the air is included in the air loading

analysis, arid the calculated attenuation increases accordingly. Since the

metal films are thin compared with a wavelength, an approximate thin plate

conductivity equation is employed in the determination of the attenuation due

to the electrical conductivity of the films. The resulting attenuation is

obtained over a very large range of values of sheet conductivity . This is

accomplished by using the equation for the first  perturbation of the eigenvalue

iteratively to determine the solution and attendant attenuation to any desired 
-

degree of accuracy. The phase velocity dispersion curve due to the mechanical

effect of a thin film plated on a substrate is determined for relatively large

wavelengths by employing the perturbation equation iteratively, and excellent

agreement is obtained with the results of other more direct approaches. The

calculations have been performed for an aluminum film on either ST-cut quartz

or Y-Z lithium niobate.
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1. Introduction

The attenuation of acoustic surface waves propagating along electroded

piezoelectric substrates arises from a number of different causes. In a manner

of speaking , these can be loosely categorized as substrate and electrode mater-

ial attenuation and air loading. The material attenuation is a result of

material viscosity and electrical and thermal conductivity. In the substrate

the viscosity is most important, the thermal conductivity of secondary import-

ance and the electrical conductivity is negligible. In the thin metal film the

electrical conductivity is of primary importance and the viscosity and thermal

conductivity are of secondary importance. In any event in this work the atten-

uation due to the finite electrical conductivity of the thin electrode plating

and air loading are determined. Measurements of attenuation due to a number

of the aforementioned causes have been made 1 5
.

The attenuation of surface waves due to air loading was first treated

analytically by Campbell and Jones6 , who ignored the influence of the viscosity

of the air and , consequently, obtained values of attenuation below those

measured by Slobodnik5. Subsequently, Auld7 obtained results identical with

those of Ref .6 using his f i rs t  order piezoelectric perturbation theory . The

attenuation of acoustic surface waves due to an adjacent semiconducting f i lm

has been calculated by lngebrigtsen8 by means of a perturbation procedure .

In this paper a piezoelectric perturbation theory is obtained from a

Green ’s fun tion formula tion9 of the equations of linear piezoelectricity10.

The resulting equation for the first perturbation of the eigenvalue is applied

in the determination of the attenuation of surface waves due to the finite

electrical conductivity of thin metal films plated on the surface and air load-

ing. The directly determined time attenuation is converted to spatial attenua—

n . T h~~~esultin~~Per rba on exPressio~~~or the sPatial atfe ion is

j
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2.

similar to that of Auj.d
7
. In the case of attenuation due to air loading the - 

-

stress in the air due to the unperturbed surface wave displacement field is

inserted in the equation for the first perturbation of the eigenvalue. The

influence of viscosity is included in addition to f luid pressure in the analysis

of the air. As a consequence the calculated attenuation due to air loading is

larger than that of either Ref.6 or 7 and is in excellent agreement with the

measurements of Szabo and Slobodnik~~ for ST-cut quartz and Slohodnik5 for

lithium niobate.

Since the aforementioned metal films are thin compared with a waveleng th ,

an approximate thin plate conductivity equation
12 is obtained, which enables

the entire electrical conductivity effect of the plating to be treated as a

boundary condition at the surface of the substrate. This approximate thin plate

conductivity equation , but with a sign difference , has been employed by Adler
13

in a treatment of semiconducting thin films . The attenuation resulting from

the conductivity of the thin f i lm is determined by employing the aforementioned

thin plate conductivity equation in the equation for the first perturbation of

the eigenvalue in the usual manner . However, in this attenuation analysis the

perturbation equation is used successively to increment the solution at one

value of sheet conductivity from the previous solution at a nearby value of

sheet conductivity, because we are interested in the attenuation over a large

range of values of sheet conductivity. In addition, the perturbation equation

is used itera tively at a fixed value of sheet conductivity to determine the

solution and attendant at tenuation to any desired degree of accuracy . With

this latter procedu re small changes in the phase velocity arc obtained as well

as the attenuation. However, we find that in this manner we are unable to

obtain the attenuation over an impractical range of values of sheet conductivity

corresponding to the maximum values of attenuation. We feel that this difficulty
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Iarises because in that range the attenuat~.on is too large for the perturbation

procedure we employ.

In addition to the foregoing the perturbation equation is applied in the

determination of the initial slope of the phase velocity dispersion curve due

to the mechanical ef fect of the thin f ilm and excellent agreement is obtained

with other14 
more direct approaches. Again, the iterative procedure is employed

to obtain considerably more than the initial slope of the dispersion curve from

the perturbation equation, and the results are shown to be extremely accurate.

Finally, it should be noted that the perturbation theory is applicable in the

determination of the attenuation due to all the aforementioned other causes.

In particular, the attenuation resulting from the material viscosity of the

substrate can readily be evaluated in the same manner using the results of

Lamb and Richter15 
for quartz.

2 . Piezoelectric Pertu rbation Theory

In this section we obtain a piezoelectric perturbation theory from a

Green ’ s function formulation1° of linear piezoelectricity . To this end we

write the equations of linear piezoelectricity in the form16

T.. . + T~~~. . = pu . (2.1)
iJ , i iJ , i 3

,

D. . + D? . = 0 (2.2)i, i 1~].

E
T.. C.. uij  i jk ~ k ,~~ k ij  , k ’

S
= e

~k2uk~~ 
— (2.3)

where (2.1) and (2.2) are the stress equations of motion and charge equation

of electrostatics, respectively;  and (2. 3) are the linear piezoclectric con—

stitutive equations and T.., u . and D. denote the componen ts of stress, mech-

anical displacement and electric displacement, respectively; p and cp denote 

_ _ _ _
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E S
the mass density arid electric potential, respectively; c .. kL, ek.. and £ . .

denote the elastic, piezoelectric and dielectric constants, respectively.

The quantities ~~~ and denote volumetric mechanical and electrical perturba-

tion terms, respectively. In (2.1)— (2.3) we have employed the convention that

a comma followed by an index denotes partial dif fer en t ia tion  with respect to a

space coordinate, the dot notation for different iat ion with respect to time and

the summation convention for repeated tensor indices .

The equations for the Green ’s tensor
17 

corresponding to (2,1) - (2.3) may

be written in the form

~~~~~ 
+ pW

2
G~~~~~~ — ô ( P — Q )8

°
, ( 2 . 4 )

(2.5) 
-

E ~T.. = c .. G + e ..f
i~~ ijkL k,L kij ,k’

= e
~kL

Gk2  
— £ikf k, (2.6)

where ; = 1-4, P and Q denote the fixed field point and variable source

point, respectively, 8 is the Dirac delta function, 5~ is the Kronecker delta,

and f~ are the mechanical displacement Green ’s tensor and electric potential

Green ’s function plus cross terms, respectively, and the significance of the

remaining quantities in (2.4)  — (2 .6) is obvious from (2.1)— (2.3). In (2.4) -

(2.6) we have assumed that all variables have a time dependence of e~~
t
. We

now make the same assumption in (2.1)— (2.3 ) and in the usual manner , from

(2.1) and (2.4), we form

5 [~~~j~~ ~~~~~~ + Pw 2u~ )G~~- (T~~ +Pw
2
G~~+ 8(P- Q)ô~ )u~] dv(Q) 

= 0 , (2.7)

where m = 1-3 and all variables in (2.7) have spatial dependence only.

Employ ing the divergence theorem and using Eqs. (2.2), (2 .3), (2.5) and (2.6),
I

we obtain

4  
-—- - -—— - - - - - --_ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--- -- --
~~~~~— — - ~~~ -- -
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I

u (P) = n .LT . .G~ - T~~.u . + D. ? - ~~9] dS (Q) +
m ~ 1 i j j  1 3 3  i. i

$ [To . .G
m 

+ D
e .

~
] dV (Q) .

iJ , 1 3

Similarly, from (2.2) and (2.5) we form

(2.9)

and utilizing the divergence theorem and (2.1), (2.3), (2.4) and (2.6), we obtain

~~(P) = $ n.[D.f~ - + T. .G~ - T~~~.U.] dS (Q) +
S ~~~~ 1 J J  iJ J

f [~ 
.f
4 

+ T~~ . .G~1 dV (Q) . (2.11 1)
1,1 iJ , i

Equations (2.8) and (2.10) constitute the Green’s function (or tensor) form of

the equations of linear piezoelectricity. It turns out that in the sequel.

although we have great use for (2.8) we have no use for (2.10) because of the

particular type of perturbation problem of interest here .

Vibrational eigensolutions of the equations of linear piezoelectricity

satisfy an equation which may be written in the form

r ~~~~~~~~~~~~~~~ + D~~q~~~ _ D ~~c~~~] 
dS = (w

2 -w 2 ) r pu~u~ dV . (1.11)
3. 13 3  13 3  3. 1 V ~ 3 3

where the scripts p~ and ‘~ refe r to the ~-Lth and Vth eigensolutions, respectively.

It should be noted that (2 .11) holds even if intermediate surfaces of cl iscon—

tinuity exist. Clearly, from ( 2.11), for homogeneous boundary cond itions , we

have

5 pu~u~ dV = N ’
~~)

6~ , (2.12)

_________________



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~ -~~~

6.

which is the orthogonality condition for piezoelectric vibrations. We now assume

that a complete set of eigensolutions u~ and exists and define orthonormal

eigensolutions to our eigenvibration or eigenwave problem by

= ut
~/N() . 

= ~P~/N() 
. (2.13)

We now expand the mechanical displacement Green ’s tensor G1
~
’ and electric

potential Green ’s vector fm in the forms

G~ = M
m
g~ f

m 
~ M

m 
f~ . (2 .14)

3 L ~i J  j
~~

whe re g
~ 

and f~ constitute orthonormal solution functions satisf ying the approp-

riate homogeneous form of (2.1) - (2.3) subject to the appropriate boundary

conditions. Substituting from (2 . 14) into (2. 4 ) ,  employing (2 .6)  and the homo—

geneous form of (2.4) for every ~L , contracting with g~, integrating over V and

utilizing (2.12), we obtain

M
m

g~~(P)/ (w
2
~~~~W

2
) .  (2.15 )

Substituting from (2.14) and (2.15) into (2.8), we obtain

Urn 2 2  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ J ET7~~~~~~(Q) + D
~~ ~~~

(Q)1dV(Q)
~ 

. (2 .16)

We may now obtain our perturbation procedure from (2.16) in the usual way
9
.

1i.e., by letting u (P) be very near one of the g., say g .  Then we m ay write

U g
1(P)  + 

~~ l 

~~~~ )~~ /~~~~~~
2
) , (2 . 17)

where

H = fn .[T. g
~
_ u .

~~
. +D.

~~
_ i.d

~1d
s+ ~~~~~ .q~~+D~ .f~ ]dV , (2 . 1~~~)1 • 3. 3.3 3 3 U i i . L i~~,i

- j  1, 1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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7.

and we have

- w
2
) = 1, ( 2 .19)

which is the equation for the first perturbation in eigenfreguency. If

= (V
1 

— (2 . 2 0)

from (2.19), we have

= H
1
/2w1. (2.21)

for the first perturbation in eigenfrequency. If we let the phase velocity v

be written

v = V
1 

— € , ( 2 . 2 2 )

then for constant wavenumber ~ = from (2 . 20)  and (2 . 2 2 ),  we have

= 

~
“
~l’ 

(2.23)

for the perturbation in phase velocity. E’urthermore, if we let

+ 6 , (2 . 2 4 )

then for constant w = ui1, from (2.22)- (2.24), we have

= ~/ v1,  (~~~
. 25)

for the perturbation in wavenuxnber.

We have discussed first order perturbation theory only because that is all

we are interested in here. For a discussion of second and higher order perturba-

tion theory see Ref. 9.

Although the perturbation theory developed here is only for purely real

perturbations of real eigenvalues, it may readily be formally generalized to

the case of purely imaginary perturbations of real eigenvalues. This formal

generalization is accomplished Simply by requiring the T .., u~, D. and cp to be

imaginary while the 1~~., g1
~ . r~ and f~ are real in Eq. (2.18). Then the FI~ in

(2.18) is purely imaginary and the i is factored out before the integration is

performed . -I 

~~~~~~
--- -

~~~~ _- —- ~~ ----- ---~- -~ - --—- -~~~ — - -  ~~~~~~~~~ -
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3. Attenuation Due to Air Loading

When the surface of the substrate is in contact with a fluid medium energy

is transmitted from the acoustic surface wave to the fluid. Since the fluid has

a much smaller mechanical impedance than the solid, the resulting attenuation can

readily be calculated by finding the steady wave induced in the fluid by the

small displacement at the surface of the substrate due to the known acoustic

surface wave propagating along a free surface and employing (2.25) with (2.21)

and (2.18). Since the fluid experiences small wave motion about a rest position.

we may employ the linear equations for the small motion of a viscous, compressible

fluid19, which may be written in the form

..a
T.  . . = p u . , (3.1)
13, 3. a j

where
a a  2 a . -a a~~aT . .  = X u 6 . .  - —

~~~~ S .. u +~~~ (U. + u . . )  (3 . 2 )
13 k,k 13 3 13 k,k 1, 3  3, 1

and X a
, 1•( a and p 5 are the modulus of compression, coefficient of viscosity a id

mass density of the fluid. u~ denotes the components of the mechanical displace-

ment vector of the fluid and 8 . . is the Kronecker delta.
13

A solut ion satisfying the differential equations and boundary conditions

of linear piezoelectricity for acoustic surface waves6 l 4
~

20
~

2l may be written

in the form n
i~ ~x i~ (x —wt )

\ (m) (m) m 2 1
U . 1 C A .  e e
J L1 3

m=1

i~ Fx i~~(x —wt)
~ (m)— (m) m~ 2 1

= L c A
4 

e e , (3.3)
m=l

for propagation in the direction x
1 

with x
2 

normal to the surface as shown in

Fig.l. For a given set of boundary conditions, say traction—free and either

short circuit or open circuit electrical condi tions, values of ~
(m)

, A~
m )

,

6 14 20—22 .A4 and B are determined numerically ‘ ‘ . These calculations have been 

~~~~--~~~~~-~~~~_- - -- —---~~- - , - _~~~~~~~~~~ — -.~~~~~~~~~~~~~~--
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. - - . 6 1 4 22 20.23 .
performed for various cuts of lithium niobate ‘ ‘ and quartz including

ST-cut quartz
22

’
24 

and are assumed known for purposes of this work.

Since the amplitude of the mechanical displacement u3 
in the substrate is

negligible compared to u
1 
and u2, we ignore u

3 
in the treatment of the fluid

and take the solution in the f luid in the form

2 
~ ~x i(~x —wt)a ~ (m) (m) xn 2 1u1 = L B  D

1 
e e

xn=1

2 e’ ~x i(~x —wt)

2 
= 

n~~l 
B
(m)

D~~
)
e 

m 2
e 

1 (3.4)

which satisfy (3 .1) ,  with (3 . 2 ) , provided

iu~i(X - iw~t + [iw~ (iw p. + p
5

V
2

) + (x - iw~ — p v 2)(~ - iw~ ) -.

(x - iw 
~
)

2~ ~ 
+ [x — - pav2] ( iw~ + P

a
V

2
I = 0, (3.5)

and

D~
m)
/D~

m) (? ~- i w~L/ 3 )  i~~/[X- (4iwR/3 ) + iw~~~’~~— r V
2
) , (3.6)

where

V = w / ~~. (3 . 7)

For a given w and surface wave velocity V known from the aforementioned suriilcc 
-

wave solutions6 . l4~ 20 24 Eq. (3 .5)  is a biquadratic in 
~ 

and yields four complex

roots . The two corresponding to propagation away from the substrate in th e

x
2
—direction are inserted in (3.4) and (3. 6)  for the solution . Moreover , the se

two solution functions decay with respect to distance from the surface of the

substrate in the x
2
-direction. The constants B

(m) are determined f rom ~~~ values

of U
1 

and u
7 

at the surfac e of the substra te, which is at x., 0. i-’~~’ time

solution in (3. .1)~ the nontrivial components of the traction vector on planes 
-

- t normal to x are given by
2 

T~~1
-~ iw~~(u~~ 1 + u ~~ 2)

H. A ,
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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~r~2 = (A + 2iufl.L/3) u~~ 1 
+ (A — 4iw~~/3) ~~~~ . (3.8)

In applying Eq. (2.18) and evaluating the normalization factor N o in (2.12)

the integration is from the surface of the substrate at x
2 0 to infinity with

respect to depth and over a wavelength of the acoustic surface wave. The

normalized acoustic surface wave eigensolution is given by

1 ~lg. = u./N1, i = cp/N1 , (3.9)

where u~ and p are given in (3 .3) , and from (2.12) and (3.3) we have

4 4 (m) (in ) (~~) * (n) *
2 ~~~ ~~~ 

~ — C 
~~~~~~~~~~ 

A
kN1 = 1 

~~ L ~~~ 

— 

(B — ~~ 
, (3.10)

-
~ in=l n=l m n

and represents complex conjugate. The first perturbation of the eigerivalue

may now be calculated from (2.18), which takes the form

2rr/~r E a 1 a 11H1 — J L ~ 21~~1 
+ T

22g
2 1  

dx
1 , (3.11)

0 x~=0

because T2 .  = 0 at x
2 

= 0 in the eigensolu tion in which the correct electrical

continuity conditions have been employed so that the electrical terms in (2.18)

cancel and the volumetric perturbation terms T~~. and D~ vanish identically in
13 i

- 
r this problem . In accordance with the discussion at the end of Section 2, w~ miow

substitute the real part of (3.9) and the imaginary part of (3.8) into (3.11).

factor out an i and perform the integration to obtain

1
= imm [

~~~~~ 
~ (m)[( jw~ D

(m 
+ W~~~~~D

(in)
)g~~~~+ (i (X + 2~~~W~~~~ / 3 ) D

m) 
+

(A — 4iw p./3) D
2 ~~~~

)g
2~~ 

] , (3 .l.~) 
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where ~~ dif’e r  from t h e  B(m) because of the normalization N
1 

in the

normalized surface wave solution which has been employed . The symbol Im denotes

the imaginary part of the complex quantity in brackets in (3.12). Note that

the real par t of the complex quantity in brackets in (3 . 12) gives a small , rela-

tively unimportant , change in surface wave velocity which we do not bother to

present. The solution we have obtained can be improved by iterating in the

manner discussed in the next two sections, but the present result is sufficiently

accura te that it is not purposeful to iterate here .

When the viscosity p
~ 

of the fluid is neglected only the normal components

of the mechanical displacement and traction force are continuous at the fric-

t.joriless interface and in this case the solution reduces considerably. First,

there is no sum in (3.4) because when p. = 0 (3.5) yields only one root corre-

sponding to a wave propagating away from the substrate. Then one need only

eliminate the sum in (3.12) and set ~ = 0 wherever it occurs. Under these

circumstances H
~ 

reduces to the cons iderably simpler form

= i~ X(w
2
/~

2)g
2
g/ [(w

2
/~
2
) - (X/P

a
)]½ , (3 .13)

Calculations have been performed for 6 as a function of frequency using

both (3.12) and (3.13) and the results are plotted in Fig.2. As can he seen from

the figure, with increasing frequency there is increasing deviation . At a fre-

quency of 1GH z , the attenuation calculated from (3.12) is in very close agreement

with the measurements of Szabo and Slobodnik11 and, of course, the attenuation

calculated from (3 .13) is not . Bechmann ’ s
25 constants for quartz were used in

the calculation. The constants employed for the air at standard temperature and

pressure (20°C and 1 atmosphere ) are26

= 1.21 , A = 14.22 x ~~~ 
..!~ , ~ = 18.22 x 10~~ 

!~ . (3.14)

~-—.- ~~~~---~~ -
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Similar calculations have been performed for lithium niobate, and the results

are plotted in Fig. 3, which shows reasonable agreement with the measurements of

Slobodnik5.

4. Velocity Dispersion Due to Thin Films

When a thin film of a different material is plated on a substrate the funda-

mental essentially Rayleigh type surface wave becomes dispers ive . Moreover ,

14 27when the f i lm is very thin compared with a waveleng th, it has been shown

that approximate thin plate equations
28 

can be used w4th great accuracy to

treat the entire mechanical effect of the plating material as a boundary condi-

tion at the surface of the substrate. Both Skeie~
9 
and Auld

7 
have used pertur—

bation equations to calculate the initial slope of the Rayleigh wave dispersion

curve due to a thin film. In this section we essentially repeat this calcula-

tion in order to emphasize the extreme accuracy with which the initial slope

of the dispersion curve due to a thin surface film can be determined by means

of perturbation theory. However, we go one step further and show how the equa-

tion for the f i r s t  perturbation of the eigenvalu e can be used i teratively to

calculate with great accuracy considerably more than the init ial  slope .

The aforementioned approximate plate equations for a thin isotropic film

plated on a substrate may be written in the form

T2~~~ - ô
jb

2h
~~~~ [( X

/ + 2 ~~/~~~
U

a a b  
+ U

b aa] 
+ 2h’P ’~~ (4.1)

where p ’, 2h ’ and A ’, ~~~
‘ are the mass density , thickness and Lame constants,

respectively, for the film material , the subscripts a and b can take the

values 1 and 3 but not 2 and T2. denotes the components of the traction vector

at the surface of the substrate, which may be obtained from ( 2 . 3 ) .  Tn this

application Eq. (2.18) takes the form

- - - --- .

~

-- - _ -

~

_-

~

-_

~ 
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- 

-
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2iT/~

H 1 - $ [T2~gfl dX1 , 
(4.2)

0 x~~=0

because the volumetric terms T~~. and D
e 
vanish identically the boundary condi—

13 i

tions employed in the surface wave solutions are T~~. = 0 and f’ = 0 and c~- = 0

in the conducting thin film. Substituting the real parts of (3,3) for the

electr ically shorted case and (4 .1) into (4.2), taking the u . in (4.1) to be

the normalized u. of the surface wave solution in (3.3) evaluated at the surface

of the substrate and performing the integration , we obtain

H
1 

= -
~~ ~~ 

+ 2 ~ 

- £..~~

2

)g1
g~ - —

~r- 
g
2
g
2 

+ - £L~~

2

)g3
q~~j, (-1 . 3)

where

(4 . 4 )

and the g~ are the components of the normalized displacement vector u. at thi ’-

interface. The initial slope of the phase velocity dispersion curve for an

aluminum f i lm on ST-cut quartz has been calculated from (4. 3) and is plotted

in Fig. 4 along with the correct curve . It is clear from the f igure  that the

agreement of the initial slopes is excellent.

If the phase velocity determined from (4.3), with (2.21)— (2 .23). for a

small nonzero value of \j is inserted in the solution for ST-cut quartz
4’25,

with the traction boundary conditions in (4.1) replacing the traction free

conditions employed in the treatments, the system resulting from the differ—

ential equations may readily be solved for the four Bm 
and the accompanying

amplitude ratios A~
m) 

and then the system resulting from any two of the three

traction boundary conditions along with the condition of vanishing potential

may readily be solved for the amplitude ratios C~~~ C~
2
~ : C~

3
~ : ~~~~~ The

resulting solution may then be employed in (2.18), which now takes the f orm

-
~~~
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21T/ ~1’ r 1 1
H
l

_
~~~ J ~~~~~~~~ - T2 .u.] 

dX
1 . 

(4.5)
0 x

2
=0

to calculate a value of phase velocity at a nonzero value of ~~. Equation (4.5)

may then be used i teratively to calculate the phase velocity at a given value

of ‘~ to any desired degree of accuracy, subject only to t i e  limitations inherent

in (4.1). To this end we substitute the real parts of (3 .3) for the cle tric—

ally shorted case , (4.1) for T2
. and

1 E 1 1
T
21 

= C
2jk~9k~~ 

+ e
k2~~

f 
k 

(4.6)

into (4 . 5 ) ,  take u . as before and perform the integration to obtain

/ , / 1 l~ l~ 1 -H1
- fl~~~~I.1 — p  -j )g 3g

3 
+ .

~~~ . (u
3T23 

+ u
3T23

) , ( . 7 )

where it has been assumed that the one boundary condition tha t  has not } -  - :  -

satisfied exactly is the condition on the traction T
23

. For nonzero y Eq. (4. 7~

may now be used iteratively to calculate the phase velocity to any dc~ iy~ d

degree of accuracy . The phase velocity dispersion curve for an alum i rmumn h i m

on ST—cut quartz has been calculated in this manner , and the r esult i e~ ul ve

ind istinguishable from the correct curve shown in Fig. 4 . S i m i l a r l y ,  tlu’ phase

velocity dispersion curve for  an aluminum f i lm on Y— Z l i th ium nioba te has hem-n

calculated and the results are plotted in Fig .5.

5. Attenuation Due to the Electrical Conductivity of Thin Films

When a thin conducting film is plated on the surface of i piezoelectrie

substrate carrying an acoustic surface wave, the attendant electric h eld causes

currents to flow in the film. Since the film is thin compared with a waveIen~mt h ,

~~ the full electrical conduction equations and associated boundary conditions ~eed

not be satisfied for the film and an approximate thin plate couductivit
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equation can be obtained as noted in the Introduction. If we assume that the

electric potential essentially does not vary across the thickness of the thin

isotropic film and that the electric field E. is derivable from the electric

potential ~~
‘ in the usual way, i.e., by

E
1

— cp
,~ 

(5.1)

then application of the conservation of charge to the element of plate shown

in Fig.6 yields

2h ’ N J  ds + S D 2 dS = 0 , (5.2)

where N
a denotes the components of the unit normal in the plane and 3 denotes

the components of the current in the plane. Substituting from Ohm’s law

= QEa , (5.3)

(5.1) and employing the divergence theorem in the plane, we obtain

_2h ’OCP aa + D
2 

0 , (5 .4 )

where is the electrical conductivity and D
2 ma : be determined from (:.

and the surface wave solution functions in (3.3), Substituting t rom (3.3)

into (5.4), we obtain

cp (0) = iWD
2
(O)/2h ’o~

2 
, (5,5)

where the notation (0) means evaluated at x2 
= 0, and the quantity 2h ’c is

called the sheet conductivity of the thin surface film .

Even though we can readily include the mechanical influence of tim e film

by means of Eq. (4.1). in this section we ignore this mechanical e f f ect  for

reasons of expediency . Under these circumstances Eq. (2.18) takes t Im e form

I 

_ _ _ _

.~~~~~ m~L_ ~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~ --—-,--.--- ~~~~~~~~ — -- -——--,--,—- .— --- - ---——-- —.
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2ri/!

~
[ 

~~~~~~~~~ 

- cp~~] dx1 , 
(5.6)

2

because the volumetric terms T~~. and D
e vanish identically and the mechanical - -

13

terms have been ignored . At this point it should be noted that had the mech-

anical terms been included , Eq. (5 .6)  would have resulted anyway if the correct

dispersive surface wave solution were employed because then (4 .1) would be

used for both T . and T1. in (2 .18). However we do not bother with this2j  2j

refinement here . For future use we note that the complex equation (5 . 5) yields

the purely real and purely imaginary equations

p (O) + *(o) = 
2 (0

2
(0) - D (0)) , (5.7)

2h’c

m (0) - ç~~(O) = (0
2

(0) + D ( O ) )  , (5.8)
2h ’o~

which we will have occasion to use separately in the sequel.

Since we are interested in obtaining results over an extremely large range

of values of sheet conductivity 2h ’a, we must perturb from the short circuit

solution for large values of sheet conductivity and the open circuit solution

for small values of sheet conductivity. To this end we first perturb from the

short circuit surface wave eigensolution, in which f1 = 0, and in accordance

with the discussion at the end of Section 2 , consider a purely imaginary Il l.

in which case (5 .6) takes the form
2n/~

H
1 
= (cp - p )  + .~~~~~~) dx1 . (5.9)

Substituting from (5.8) into (5.9) and performing the integration, we obtain

H
1 

= (iwrT/2h’ 
3
)4~~(O )b~~~(0) , (5 . 10) 

—-----—
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where

— 

~ 2k~ , k 
(5. 11)

The attenuation calculated from (5.10) at a frequency of 100 MHz for ST-cut

quartz is plotted as the curve marked short—circuit in Fig.7. This curve is

valid for extremely large values of sheet conductivity only, which happens to

be the region of practical interest. For somewhat smaller values of sheet con-

ductivity , a considerably more accurate value of attenuation may be obtained in

the following manner. First the corrected eigenvalue, including the determined

time attenuation as well as the phase velocity, may be substituted in the system

resulting from the solution of the piezoelectric differential equations, which

may then readily be solved for the four and the accompanying amplitude

ratios A~
m)

. Then the linear algebraic equations resulting from the three

traction boundary conditions may be solved for the amplitude ratios C~~~~:C~~ ~

~~~~~~ The resulting solution may then be employed in (5.6), which for

purely imaginary H~ we take in the form

2iT/~
I 1 ~‘l l~ ~ l l~- 1

H 1 ~~~ ~~~~~~~~~~~~~~ ~~~~~ 2 
— (D 2

— D
2

) ( f  + f  ) J - i x 1 
(5 .1.’)

in order that the iterative perturbation procedure tend to satisfy the boundary

condition (5.5), i.e., in order that H~ vanish for the exact solution that

satisfies (5.5). For a purely real H~ , (5.6) takes the form

2ir/~j [(~ + +~~~~~ _ (D
2
÷D~~~~~~+?1~~]dx 1 

. (5.13)

Substituting from (5.8) into (5.12) and (5.7) into (5.13) and performing the

integrations, we obtain 



— 
~~~~~~
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i~~~ ~~~~~ ~~~~~~~~~ (~ l~~ - D 2f
1 ) , (5 . 1 4 )

2hO~

= — -
~~~~ (f 1

D + D
2
f

1
) , (5. 15)

~1 .where D , is to be taken to be the same as 
~~2 given in (5 . 11). Equation (5. 14)

determines the change in attenuation from any given state and Eq. (5.15) deter-

mines the change in phase velocity or frequency from any given state. Equa-

tions (5 . 14) and (5.15) may now be used iteratively to calculate the attenuation

and phase velocity to any desired degree of accuracy as long as the attenuation

is not too large. The attenuation calculated in the foregoing manner at a

frequency of 100 MHz for ST—cut quartz yields the curve below the short-c-ircuit

curve in Fig. 7 . The iterated attenuation calculation does not converge for

values of sheet conductivity lower than the value at which the solid curve ends.

We believe that this d i f f i cu l ty  arises because the perturbation procedure w~

employ is for perturbations of f real eigenvalues only, and in the region in

which we cazmot perform the calculation the attenuation is too large for  time

eigenvalue tc! be treated as approximately real for  the accuracy requi r - i .

We now perturb from the open—circuit surface wave ci gensolution. in which

= ( ‘ 16 )

by considering a pur ely imaginary 
~ 

in (5.6) which , with (5.16~ takes ti m e form

2;/~
1 - ‘~

- --i 

~l “lx-
= J ~~~~~ 

) — (D
2

— D
2

) f + f J d x 1 . (5 . Y7)
0

Substitu ting from (5. 7) into (5 .17) ,  taking ~ to be and per forming the into—

gration , we obtain

Ill = (i~rT2h ’~ /w)f
1
(0)f

1 
(0) . (5. l~~)



-
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The attenuation calculated from (5.18) at a frequency of 100 MHz for ST-cut

quartz is plotted as the curve marked open-circuit in Fig. 7 . This curve is

valid for relatively small values of sheet conductivity only. For somewhat

larger values of sheet conductivity, a more accurate value of attenuation is

obtained by using the corrected eigenvalue in the governing equations in the

manner set forth in the short-circuit case and employing the resulting solution

in (5.12) and (5.13), respectively, while substituting from (5.7) into (5.12)

and (5.8) into (5.13) and performing the integrations to obtain

= 
2h ’~~i~~~ ~~~~~~~~~~~~~ 

~~~~~~ 
- 

~~~~~~~ ) , (5 . 19)

H
1 

= 

~~ 
(c~~ + ~~ .J

2
) . (5 . 20)

Equations (5.19) and ( 5 . 2 0 )  may now be used iteratively to calculate the atten—

uation and phase velocity , respectively, to any desired degree of accuracy as

long as the attenuation is not too large. The attenuation calculated in the

foregoing manner at a frequency of 100 MHz for ST—cut quartz yields the curve

below the open—circuit curve in Fig.7. This time the iterated attenuation

calculation does not converge for values of sheet conductivity higher than the

value at which the solid curve ends, and the reasons for this are the same as

those discussed earlier in the short—circuit case. Similar calculations have

been performed for Y—Z lithium niobate and the results are plotted in Fig.8.
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FIGURE CAPTIONS

Figure 1 Diagram Showing the Free Surface of a Semi-infinite Solid

Figure 2 Attenuation of Surface Waves on ST—Cut Quartz due to Air
Loading at Standard Temperature and Pressure (a)  with and
(b) without Fluid Viscosity. The dot is the value measured

• by Szabo and Slobodnik11 .

Figure 3 Attenuation of Surface Waves on Y-Z Lithium Niobate due to
Air Loading at Standard Temperature and Pressure (a) with and

- 
-

- 
(b) without Fluid Viscosity. The dot is the value measured

by Slobodnik6 .

Figure 4 Lowest Straight-Crested Phase Velocity Dispersion Curve for
an Aluminum Film on ST-Cut Quartz

Figure 5 Lowest Straight—Crested Phase Velocity Dispersion Curve for
an Aluminum Film on Y-Z Lithium Niobate

Figure 6 Diagram Showing an Arbitrary Element of the Thin Conducting
Film

Figure 7 Attenuation of Surface Waves on ST—Cut Quartz due to Thin
Conducting Films as a Function of Sheet Conductivity at a
Frequency of 100 MHz

Figure 8 Attenuation of Surface Waves on Y-Z Lithium Niobate due to
Thin Conducting Films as a Function of Sheet Conductivity at
a Frequency of 100 MHz
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